
# Cellular Security - Why is it difficult? -

Yongdae Kim KAIST SysSec Lab

\* A revised presentation from QPSS'19 presentation

## SysSec Lab.

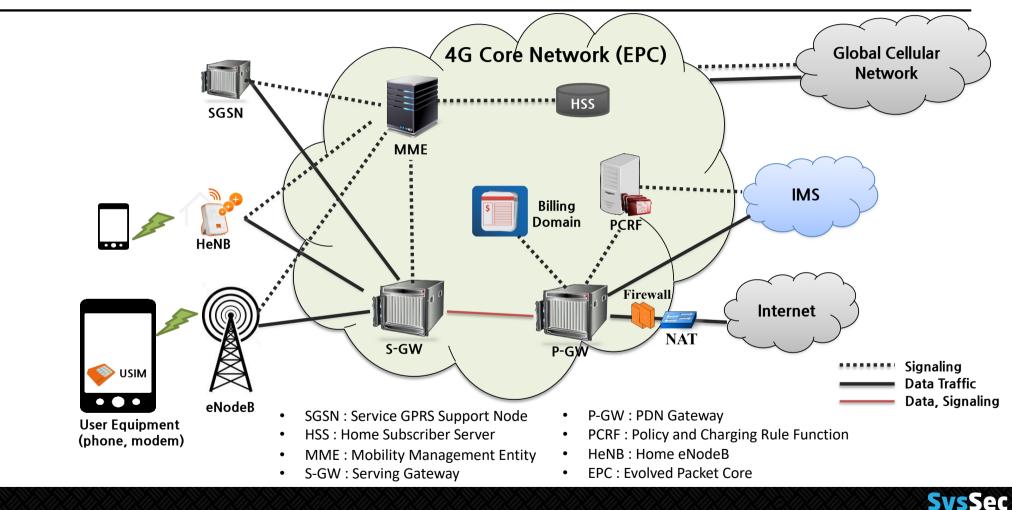
- System Security Lab. @ KAIST, Korea
  - Yongdae Kim
  - Prof @ Electrical Engineering & Information Security



- Research areas: Finding new problems in Emerging Technologies such as Drone, Blockchain, Medical device, Automobiles, Cellular, ...
  - Software vulnerability (hacking)
  - Physical system security (sensor, hardware Trojan, ...)
  - Wireless communication security (Bluetooth, Zigbee, ...)
  - Mobile network security (privacy, abuse, ...)
- My students report vulns to vendors e.g. Qualcomm, Samsung, Apple, Huawei, LG, Carriers, Velodyne, etc.

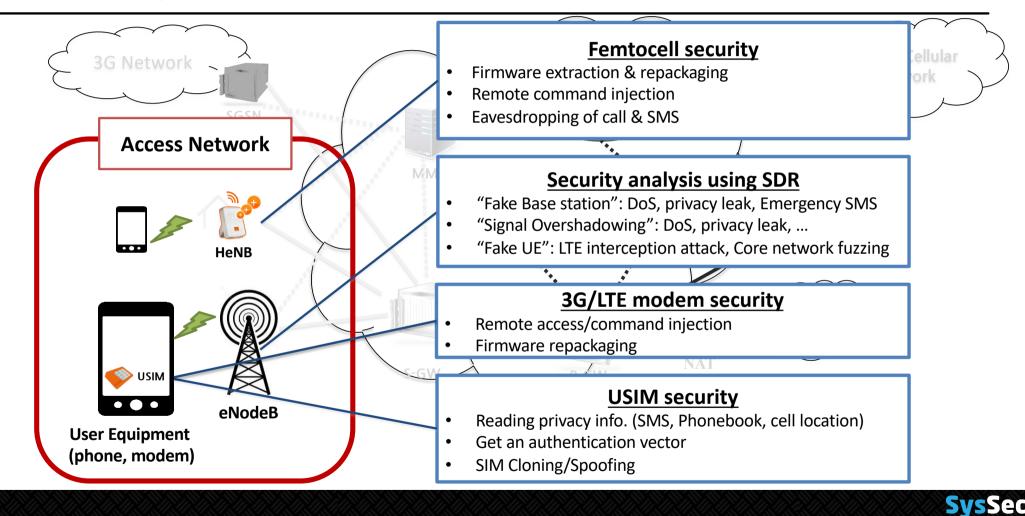
# **Cellular Security Publications (Selected)**

- Location leaks on the GSM Air Interface, NDSS'12
- Gaining Control of Cellular Traffic Accounting by Spurious TCP Retransmission, NDSS' 14
- Breaking and Fixing VoLTE: Exploiting Hidden Data Channels and Mis-implementations, CCS'15
- When Cellular Networks Met IPv6: Security Problems of Middleboxes in IPv6 Cellular Networks, EuroS&P'17
- GUTI Reallocation Demystified: Cellular Location Tracking with Changing Temporary Identifier, NDSS'18
- Peeking over the Cellular Walled Gardens: A Method for Closed Network Diagnosis, IEEE TMC'18
- Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane, S&P'19
- Hiding in Plain Signal: Physical Signal Overshadowing Attack on LTE, Usenix Sec'19
- Hidden Figures: Comparative Latency Analysis of Cellular Networks with Fine-grained State Machine Models, Hotmobile'19
- BASESPEC: Comparative Analysis of Baseband Software and Cellular Specifications for L3 Protocols, NDSS'21
- DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices, Usenix Sec'22
- Watching the Watchers: Practical Video Identification Attack in LTE Networks, Usenix Sec'22

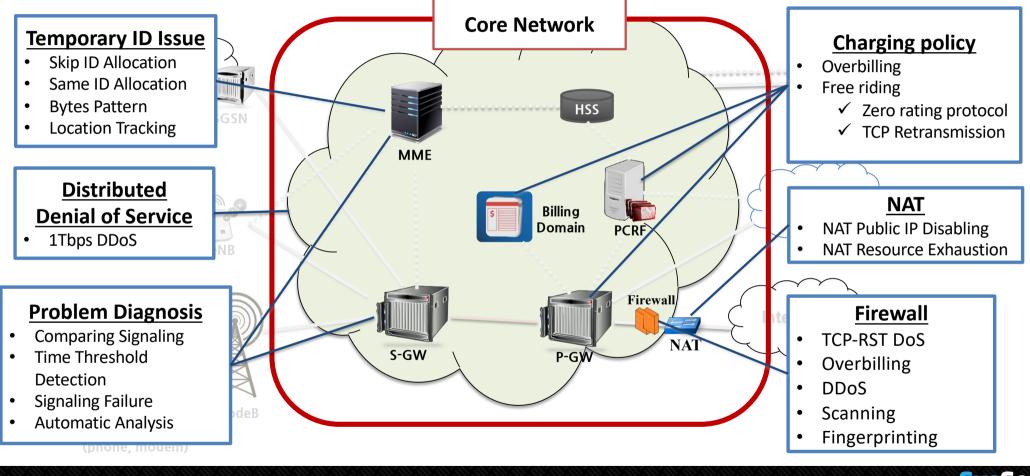



### IMO, many mores to come...

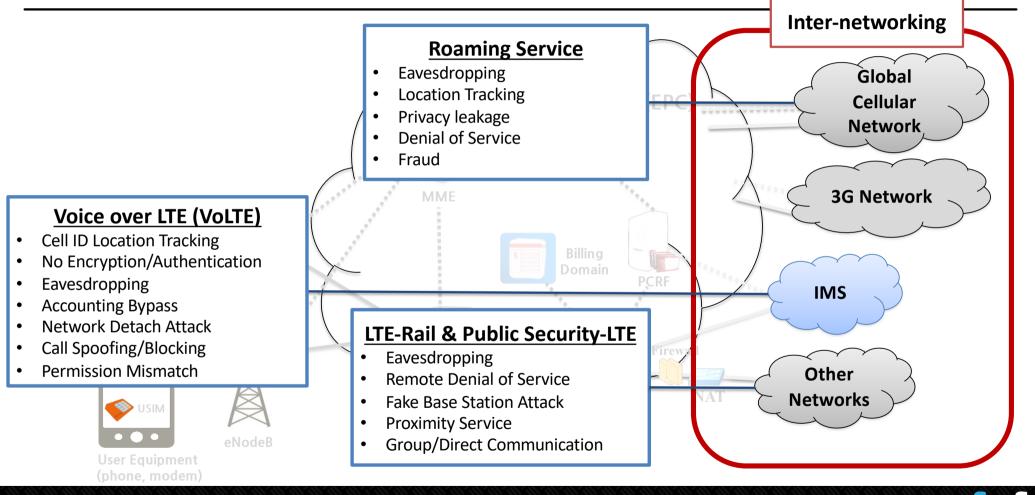
# Why cellular networks/devices/protocols have so many security problems?




### **4G LTE Cellular Network Overview**




System Securi


### **Security Issues in Device & Access Network**



### **Security Issues in Core Network**

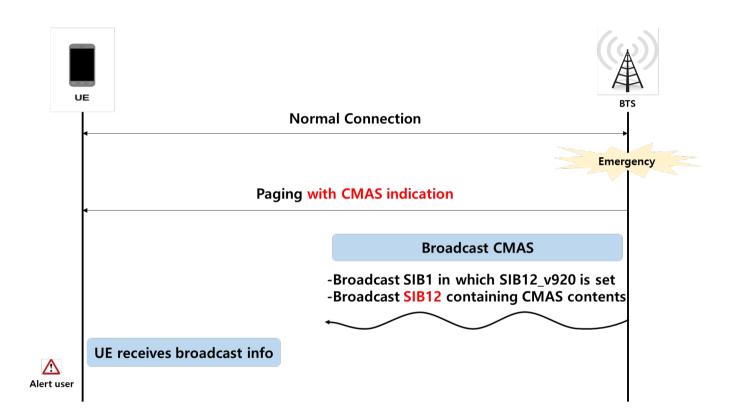


### **Security Issues in Services**



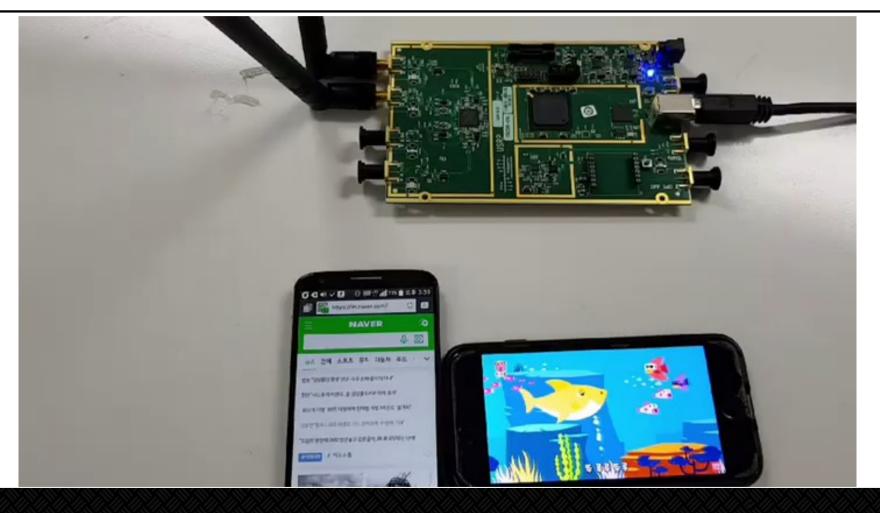
# **Cellular Security: Why Difficult? Meta**

- New Generation (Technology) every 10 years
  - − New Standards, Implementation, and Deployment → New vulnerabilities
- Generation overlap: e.g. 3G, LTE and CSFB vulnerabilities in CSFB
- Backward compatibility: e.g. supporting 2G
- ✤ Government > Carrier > Device vendors > Customers ☺
- ✤ Walled Garden
  - Carriers and vendors don't talk to each other.
  - Carriers: (Mostly) No response to responsible disclosure
- New HW/SW tools are needed for each generation.
  - Slow/imperfect open-source development (Thank you, SRS)
  - Still waiting for 5G SA radio (USRP was useful for LTE)


# **Cellular Security: Why difficult? Standard**

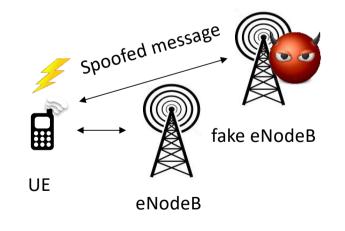
- ✤ Complicated and huge standards ➔ Hard to find bugs, need a large group
  - Multiple protocols co-work, but written in separate docs
- Quite a few unpatched design vulnerabilities
- Standards are written ambiguously
  - Misunderstanding by vendors and carriers
  - − Spec → State machine for formal analysis
- Leave many implementation details for vendors
- Cellular networks/devices could be different from each carrier and vendor
  - Therefore, vulnerabilities are different
- Conformance testing standard, but (almost) no security testing standard

# **Unpatched Design Vulnerabilities**




### **CMAS Protocol**

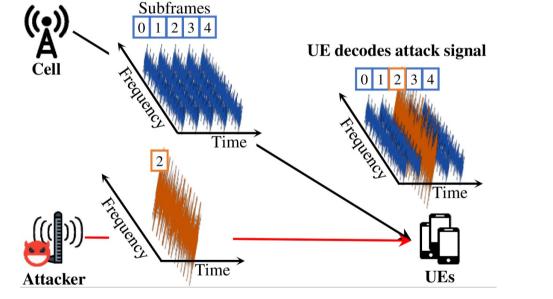


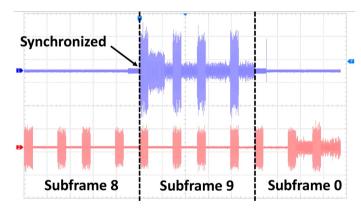



### Fake CMAS broadcast attack



# Attacks using SDR based "Fake BTS"


- Exploit physical layer procedure
  - Fake BTS synchronizes with a benign eNodeb, and send spoofed signal to UEs or receive uplink signal from UEs
    - Selective Jamming
    - Malicious data injection
      - e.g. warning message (Emergency SMS), detach message
- Exploit unprotected RRC, NAS Procedure
  - DoS: Attach/TAU/Service Reject
  - Privacy leak: Identity request




14

# Signal Overshadowing: SigOver Attack

- Signal injection attack exploits broadcast messages in LTE
  - Broadcast messages in LTE have never been integrity protected!
- Transmit time- and frequency-synchronized signal





<sup>15</sup> Hiding in Plain Signal: Physical Signal Overshadowing Attack on LTE, Usenix Security 2019

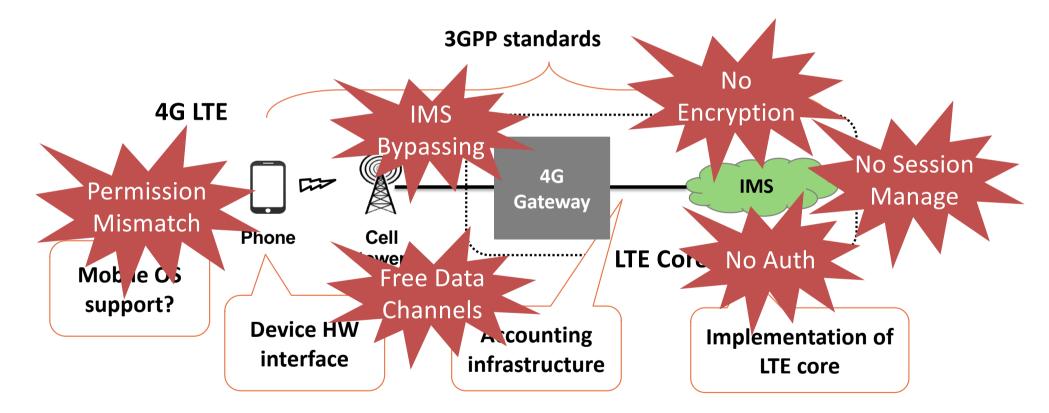


# Demonstration of Signal Injection attack

# DATA RESTRICTIONS

## **Cellular Insecurity in Standard**

- Unauthenticated broadcast channel
- Roaming networks such as SS7 and Diameter
- Unauthenticated initial messages
- No voice encryption
- Lawful Interception
- Still symmetric key-based key management
- Suppose you implement cellular network (e.g. 6G) from scratch, would you design with these insecurities?




# Security of New Systems



### **VoLTE makes cellular network more complex**

Let's check potential attack vectors newly introduced in VoLTE



19 Breaking and Fixing VoLTE: Exploiting Hidden Data Channels and Mis-implementations, CCS'15



| Free Data  | a Channels Free       |                              | Chanr           | nel   |          | US-1         | US              | 5-2                               | KR-1            | KR-2         | KR-3                |
|------------|-----------------------|------------------------------|-----------------|-------|----------|--------------|-----------------|-----------------------------------|-----------------|--------------|---------------------|
|            | Using VoLTE Protocol  |                              | SIP Tunneling   |       |          | $\checkmark$ | $\checkmark$    | 1                                 | $\checkmark$    | $\checkmark$ | $\checkmark$        |
| Using VOL  |                       |                              | Media Tunneling |       |          | $\checkmark$ | $\checkmark$    | /                                 | $\checkmark$    | $\checkmark$ | $\checkmark$        |
| Di         | rect                  | Phone                        | e to Ph         | one   |          | $\checkmark$ | X               | ζ                                 | $\checkmark$    | ×            | X                   |
| Commu      | inication             | Phone                        | to Inte         | ernet |          | X            | $\checkmark$    |                                   | $\checkmark$    | ×            | X                   |
| Weak Point | Vulnera               | Vulnerability                |                 |       | KR-1     | KR-2         | KR-3            |                                   | Possible Attack |              |                     |
|            | No SIP Encryption     |                              | <b>O</b>        |       | <b>O</b> | 0            | 0               | Message manipulation              |                 |              |                     |
|            | No Voice Data         | 0                            | 0               | 0     | 0        | 0            | Wiretapping     |                                   |                 |              |                     |
| IMS        | No Authentication     |                              |                 |       | 6        | 0            |                 | Caller Spoofing                   |                 |              |                     |
|            | No Session Management |                              | 0               | 0     | 0        | •            | 0               | Denial of Service on Core Network |                 | twork        |                     |
| 4G-GW      | IMS Byp               | 6                            |                 | 6     |          |              | Caller Spoofing |                                   |                 |              |                     |
| Phone      | Permission            | rmission Mismatch Vulnerable |                 |       | e for a  | ll Andro     | id              | Denia                             | al of Service   | on Call, Ove | erbilling           |
| )          |                       |                              |                 |       |          |              | ••••: V         | ulnei                             | rable 🥲         | : Secure     | Syss<br>System Sect |

# **Cellular Security Testing**



# **Cellular Security Testing (Analysis)**

#### Target

- Cellular modem/devices, cellular carrier networks, standards
- ✤ Why?
  - New Generation (Technology) every 10 years
  - Complicated and huge standards
  - Ambiguous standards
  - Leave many implementation details for vendors
  - Cellular networks/devices could be different from each carrier and vendor
  - Conformance testing standard, but (almost) no security testing standard



## Approaches

- Keywords
  - Static, dynamic, comparative, negative testing, formal analysis, state machine, specification, traffic, binary, source code, modem, devices, specification, ...

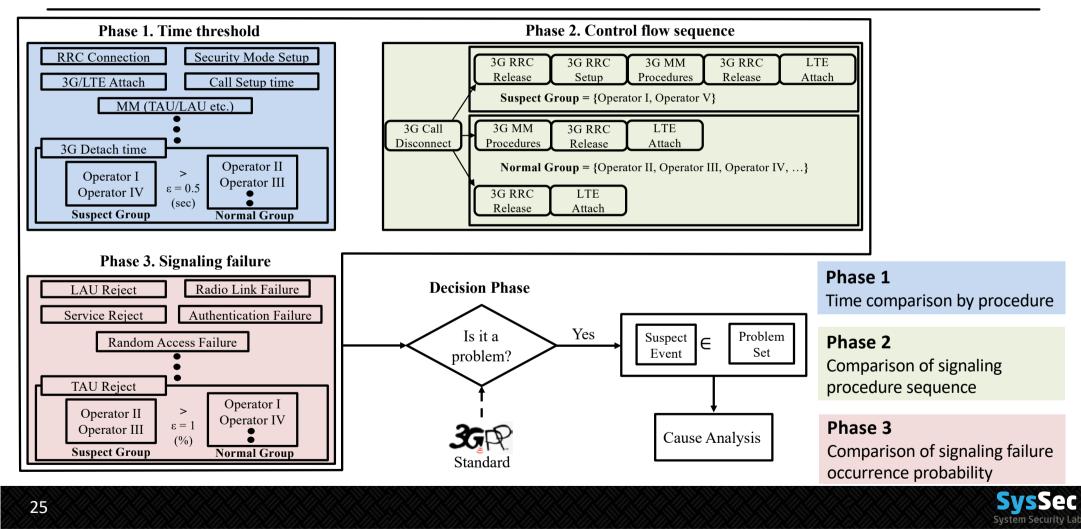
#### Summary

| Venue     | Торіс   | Test Keywords                                                     |
|-----------|---------|-------------------------------------------------------------------|
| CCS'15    | VoLTE   | Static, dynamic, negative testing, binary, modem, device, carrier |
| TMC'18    | NAS/RRC | Dynamic, comparative, device, carrier                             |
| S&P'19    | NAS/RRC | Dynamic, negative testing, modem, device, carrier                 |
| NDSS'21   | NAS/RRC | Static, comparative, modem, binary, specification                 |
| Usenix'22 | NAS/RRC | Dynamic, negative testing, modem                                  |



### **Worldwide Data Collection**

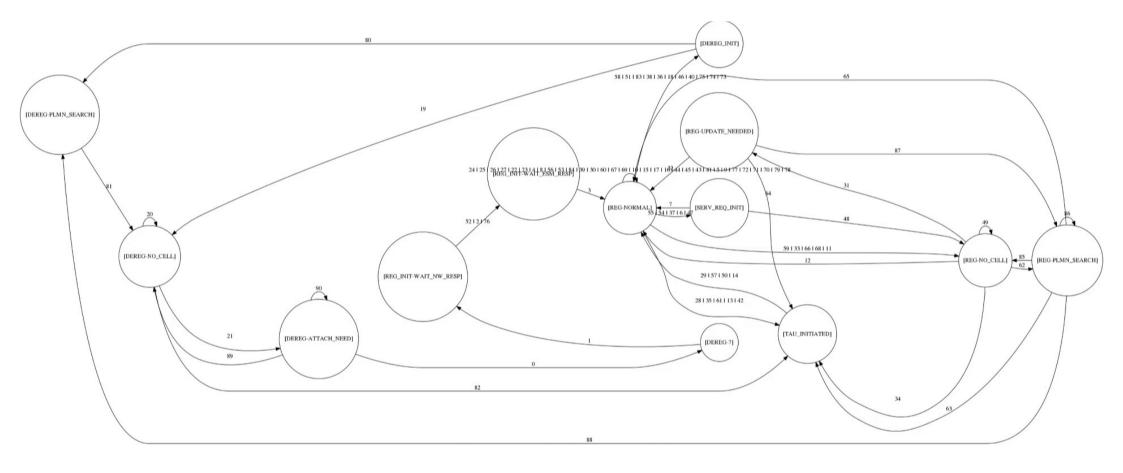
| Country     | # of OP. | # of signalings | Country     | # of OP. | # of signalings |
|-------------|----------|-----------------|-------------|----------|-----------------|
| U.S.A       | 3        | 763K            | U.K.        | 1        | 41K             |
| Austria     | 3        | 807K            | Spain       | 2        | 51K             |
| Belgium     | 3        | 372K            | Netherlands | 3        | 946K            |
| Switzerland | 3        | 559K            | Japan       | 1        | 37К             |
| Germany     | 4        | 841K            | South Korea | 3        | 1.7M            |
| France      | 2        | 305K            |             |          |                 |

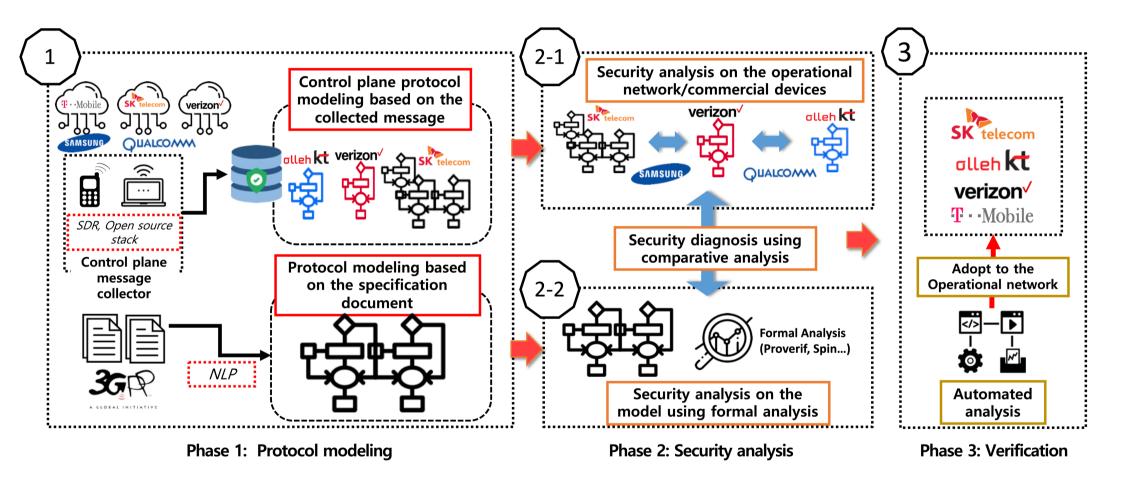

#### **Data summary**

# of countries: 11
# of operators: 28
# of USIMs: 95
# of voice calls: 52K
# of signalings (control-plane message): 6.4M






### **Problem Diagnosis Overview**




### **Identified Problems**

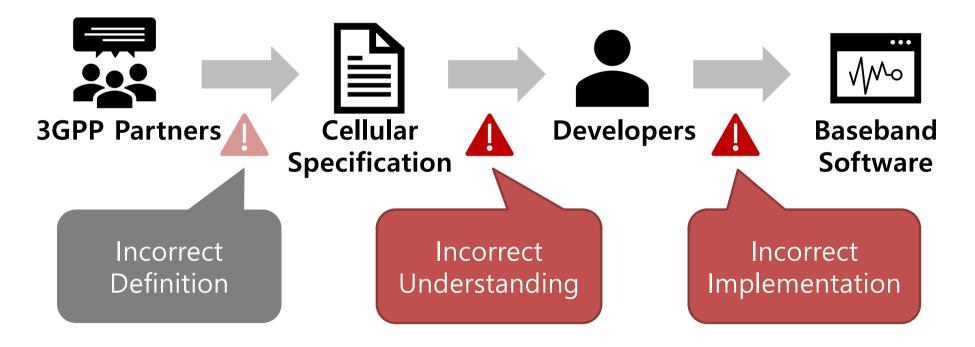
| Problem                             | Observation                                          | Operator                         |
|-------------------------------------|------------------------------------------------------|----------------------------------|
| LTE location update collision       | Out-of-service about 11 s                            | US-II                            |
| Mismatch procedures                 | Delay of 3G detach. Worst case: <b>10.5 s</b>        | US-I, DE-I. DE-II, FR-I, FR-II   |
| Allocation of incorrect frequency   | Out-of-service 30 sec. and stuck in 3G for 100 s     | DE-I                             |
| Redundant location update           | Delay of LTE attach or call setup. Worst case: 6.5 s | US-I, DE-I, DE-III, FR-II        |
| Redundant authentication            | Delay of CSFB procedures for 0.4 s                   | FR-I, FR-II, DE-I, DE-III, FR-II |
| Security context sharing error      | Out-of-service 1.5 s                                 | ES-I                             |
| Core node handover misconfiguration | Delay of LTE attach (0.4 s)                          | US-II                            |







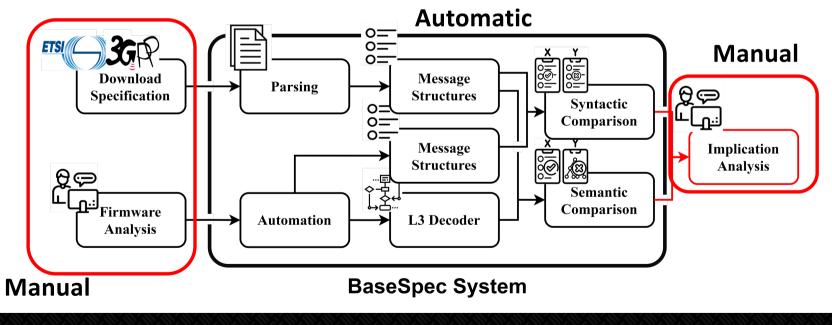
SysSec System Security Lal


### BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications





## **Errors in Protocol Implementation**


Many points of human errors in development process





### **BaseSpec Overview**

- 1. Extract message structures from the specification documents
- 2. Extract message structures and decoder information from the firmware
- 3. Syntactically, 4. Semantically compare them
- 5. Report the mismatch results

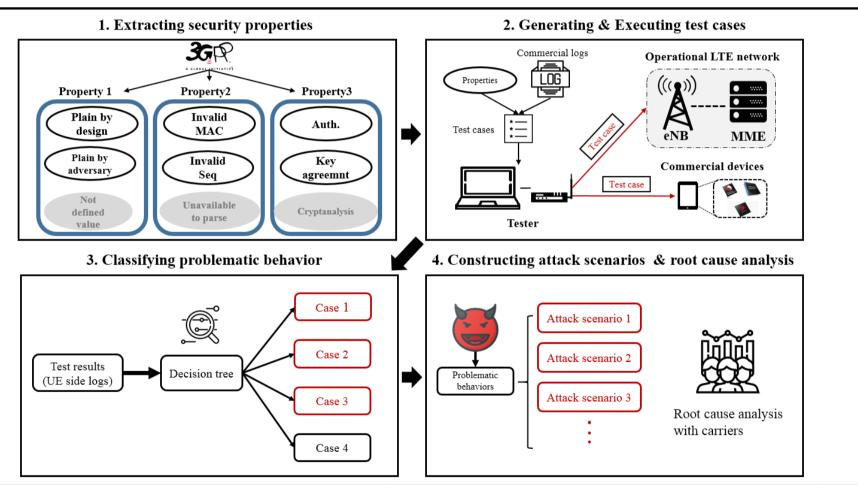


### Mismatch Results (vendor x)

- Missing Mismatches of mandatory IE & Unknown Mismatches
  - Directly indicate functional errors (drop of benign IE / undefined behavior)
- Invalid Mismatches
  - Numerous incorrect length limit / ad-hoc length checkers
  - Can lead to memory-related bugs
- Missing optional IEs
  - May not be buggy

**9 Error cases** (4 Memory-related including 2 RCEs)

|         |           | Missing N    | lismatch    | Unknown      | Mismatch    | Invalid Mismatch |             |
|---------|-----------|--------------|-------------|--------------|-------------|------------------|-------------|
| Models  | Total IEs | Mandatory IE | Optional IE | Mandatory IE | Optional IE | Mandatory IE     | Optional IE |
| Model A | 1475      | 5            | 189         | 6            | 58          | 94               | 364         |
| Model B | 1475      | 5            | 192         | 6            | 58          | 94               | 361         |
| Model C | 1475      | 5            | 192         | 6            | 58          | 94               | 361         |
| Model D | 1475      | 5            | 203         | 6            | 58          | 94               | 349         |
| Model E | 1475      | 5            | 203         | 6            | 58          | 94               | 349         |




# **Fuzzing LTE Core and Baseband**



### LTEFuzz

34



Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane, S&P'19

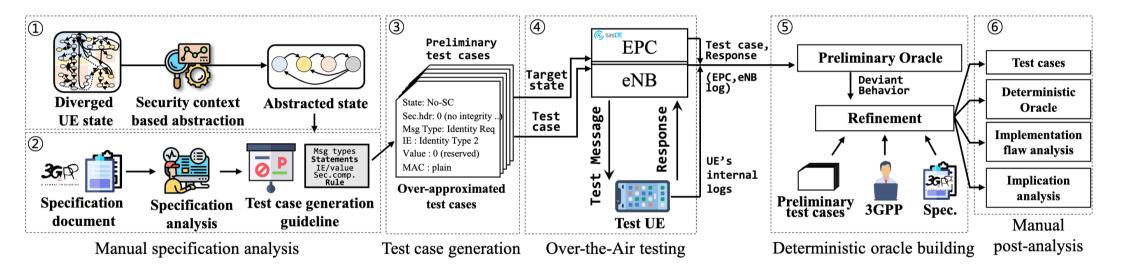


| Test messages                          | Direction          | Property 1-1          | Mandania             | Property 2-1 (I)     | Property 2-2 (R)      | Property 3 | Affected component |
|----------------------------------------|--------------------|-----------------------|----------------------|----------------------|-----------------------|------------|--------------------|
| NAS                                    |                    |                       | Vendor issue         | es                   |                       |            |                    |
| Attach request (IMSI/GUTI)             | Specification issu |                       | DoS                  | DoS                  | DoS                   | -          | Core network (MME) |
| Detach request (UE originating detach) | UL                 | •                     | DoS [1]              | DoS                  | DoS                   | -          | Core network (MME) |
| Service request                        | UL                 | -                     | -                    | В                    | Spoofing              | -          | Core network (MME) |
| Tracking area update request           | UL                 | -                     | DoS                  | DoS                  | FLU and DoS           | -          | Core network (MME) |
| Uplink NAS transport                   | UL                 | -                     | SMS phishing and DoS | SMS phishing and DoS | SMS replay            | -          | Core network (MME) |
| PDN connectivity request               | UL                 | В                     | В                    | DoS                  | DoS                   | -          | Core network (MME) |
| PDN disconnect request                 | UL                 | -                     | В                    | DoS                  | selective DoS         | -          | Core network (MME) |
| Attach reject                          | DL                 | DoS [2]               | DoS [3]              | -                    | -                     | -          | Baseband           |
| Authentication reject                  | DL                 | DoS [4]               | •                    | -                    | -                     | -          | Baseband           |
| Detach request (UE terminated detach)  | DL                 | -                     | DoS [4]              | -                    | -                     | -          | Baseband           |
| EMM information                        | DL                 | -                     | Spoofing [5]         | -                    |                       | -          | Baseband           |
| GUTI reallocation command              | DL                 | -                     | В                    | В                    | ID Spoofing           |            | Baseband           |
| Identity request                       | DL                 | Info. leak [6]        | В                    | В                    | Info. leak            | -          | Baseband           |
| Security mode command                  | DL                 | -                     | В                    | В                    | Location tracking [4] | -          | Baseband           |
| Service reject                         | DL                 | -                     | DoS [3]              | -                    |                       | -          | Baseband           |
| Tracking area update reject            | DL                 | -                     | DoS [3]              | -                    | -                     | -          | Baseband           |
| RRC                                    |                    |                       |                      |                      |                       |            |                    |
| RRCConnectionRequest                   | UL                 | DoS and con. spoofing | -                    | -                    | -                     | -          | Core network (eNB) |
| RRCConnectionSetupComplete             | UL                 | Con. spoofing         | -                    | -                    | -                     | -          | Core network (eNB) |
| MasterInformationBlock                 | DL                 | Spoofing              | -                    | -                    | -                     | -          | Baseband           |
| Paging                                 | DL                 | DoS [4] and Spoofing  | -                    | -                    | -                     | -          | Baseband           |
| RRCConnectionReconfiguration           | DL                 | -                     | MitM                 | DoS                  | В                     | -          | Baseband           |
| RRCConnectionReestablishment           | DL                 | -                     | Con. spoofing        | -                    | -                     | -          | Baseband           |
| RRCConnectionReestablishmentReject     | DL                 |                       | DoS                  |                      |                       | -          | Baseband           |
| RRCConnectionReject                    | DL                 | DoS                   | •                    | -                    | -                     | -          | Baseband           |
| RRCConnectionRelease                   | DL                 | DoS [2]               | •                    | -                    | -                     | -          | Baseband           |
| RRCConnectionSetup                     | DL                 | Con. spoofing         | •                    | -                    |                       |            | Baseband           |
| SecurityModeCommand                    | DL                 | -                     | В                    | В                    | В                     | MitM       | Baseband           |
| SystemInformationBlockType1            | DL                 | Spoofing [4]          | •                    | -                    | -                     | -          | Baseband           |
| SystemInformationBlockType 10/11       | DL                 | Spoofing [4]          | •                    | -                    | -                     | -          | Baseband           |
| SystemInformationBlockType12           | DL                 | Spoofing [4]          | •                    | -                    | -                     | -          | Baseband           |
| UECapabilityEnquiry                    | DL                 | Info. leak            | •                    | Info. leak           | Info. leak            | -          | Baseband           |

# Attacks exploiting MME

- Result of dynamic testing against different MME types
  - Carrier 1: MME1, MME2, Carrier2: MME3 (MME1 & MME3: the same vendor)

| Exploited        | Implications                                                                                       |                                        |                                                         |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------|--|--|--|--|
| NAS Messages     | $\mathbf{MME}_1$                                                                                   | $MME_2$                                | MME <sub>3</sub>                                        |  |  |  |  |
| Attach Request   | DoS (P, I, R)                                                                                      | ×                                      | DoS ( <b>P</b> , <b>I</b> , <b>R</b> )                  |  |  |  |  |
| TAU Request      | DoS (P, I, R)                                                                                      | ×                                      | DoS ( <b>I</b> ),<br>False location update ( <b>R</b> ) |  |  |  |  |
| Uplink NAS       | DoS ( <b>P</b> , <b>I</b> ),                                                                       | SMS phishing                           | _                                                       |  |  |  |  |
| Transport        | SMS phishing ( <b>R</b> )                                                                          | ( <b>P</b> , <b>I</b> , <b>R</b> )     |                                                         |  |  |  |  |
| PDN Connectivity | DoS (I)                                                                                            | ×                                      | DoS, DosS ( $\mathbf{R}$ )                              |  |  |  |  |
| Request          |                                                                                                    | ~                                      | D05, D055 ( <b>K</b> )                                  |  |  |  |  |
| PDN Disconnect   | $D_{0}S(\mathbf{I}) = D_{0}S(\mathbf{P})$                                                          | ×                                      | $D_{00}S(\mathbf{P})$                                   |  |  |  |  |
| Request          | DoS (I), DosS (R)                                                                                  | ×                                      | DosS ( $\mathbf{R}$ )                                   |  |  |  |  |
| Detach Request   | DoS ( <b>P</b> , <b>R</b> )                                                                        | DoS ( <b>P</b> , <b>I</b> , <b>R</b> ) | DoS ( <b>P</b> , <b>I</b> , <b>R</b> )                  |  |  |  |  |
| DosS: ]          | <b>DosS:</b> Denial of selective Service, <b>P:</b> Plain, <b>I:</b> Invalid MAC, <b>R:</b> Replay |                                        |                                                         |  |  |  |  |




## **Negative Testing**

- ✤ Conformance testing → check if valid messages are correctly handled
- Negative testing?
  - check if invalid or prohibited messages are appropriately handled
  - Among 993 test scenarios in conformance spec, only 14 cases are negative.
  - Challenges
    - How do we enumerate violating cases?
    - UE/Network state dependence
    - Spec is difficult to understand → Oracle?
    - Baseband/UE implementation diversity



### DoLTEst





|    | iPhone 6         | Apple   | Qualcomm  | MDM9625                  | 7.21.00 / 7.80.04                                           | 1810/2101 | \$1,\$3,I1 / \$2,\$3,I1    |
|----|------------------|---------|-----------|--------------------------|-------------------------------------------------------------|-----------|----------------------------|
| 2  | iPhone 8         | Apple   | Intel     | XMM 7480                 | 4.02.01                                                     | 2103      | 13                         |
| 3  | iPhone XS        | Apple   | Intel     | XMM 7560                 | 1.03.08                                                     | 1902      | I3                         |
| 4  | iPhone 12 Pro    | Apple   | Qualcomm  | Snapdragon X55           | 1.62.11                                                     | 2104      | -                          |
| 5  | Y9               | Huawei  | HiSilicon | Kirin 659                | 21C60B269S003C000                                           | 1806      | \$3,13                     |
| 6  | P10 Lite         | Huawei  | HiSilicon | Kirin 658                | 21C60B268S000C000                                           | 1711      | 13                         |
| 7  | P10              | Huawei  | HiSilicon | Kirin 960                | 21C30B323S003C000                                           | 1805      | 13                         |
| 8  | Mate 10 Pro      | Huawei  | HiSilicon | Kirin 970                | 21C10B551S000C000                                           | 1801      | 13                         |
| 9  | P20 pro          | Huawei  | HiSilicon | Kirin 970                | 21C20B369S007C000                                           | 1904      | 13                         |
| 10 | Mate 20 pro      | Huawei  | HiSilicon | Kirin 980                | 21C10B687S000C000                                           | 1812      | 13                         |
| 11 | X401             | LG      | Mediatek  | MT6750                   | MOLY.LR11.W1552.MD.TC01.LVSF.SP.V1.P22                      | 1802      | S2,M1                      |
| 12 | X6               | LG      | Mediatek  | Helio P22 MT6762         | MOLY.LR12A.R3.TC01.PIE.SP.V1.P10.T12                        | 1907      | S2                         |
| 13 | K50              | LG      | Mediatek  | Helio P22 MT6762         | MOLY.LR12A.R3.TC01.PIE.SP.V1.P26                            | 2012      | S2                         |
| 14 | G6               | LG      | Qualcomm  | MSM8996 Snapdragon 821   | MPSS.TH.2.0.1.c3.1-00024-M8996FAAAANAZM-1.142344.1.143233.1 | 1804      | S1,S2,S3                   |
| 15 | V35 ThinQ        | LG      | Qualcomm  | SDM845 Snapdragon 845    | MPSS.AT.4.0.c2.9-00057-SDM845_GEN_PACK-1                    | 1901      | S1,S2                      |
| 16 | G7 ThinQ         | LG      | Qualcomm  | SDM845 Snapdragon 845    | MPSS.AT.4.0.c2.9-00088-SDM845_GEN_PACK-1.299473             | 2008      | S2                         |
| 17 | G8 ThinQ         | LG      | Qualcomm  | SM8150 Snapdragon 855    | MPSS.HE.1.0.c4-00104-SM8150_GEN_PACK-1                      | 2101      | S2                         |
| 18 | V50              | LG      | Qualcomm  | SM8150 Snapdragon 855    | MPSS.HE.1.5.c4-00270.1-SM8150_GENFUSION_PACK-1.215515.14    | 1909      | S2                         |
| 19 | Oppo find X      | OPPO    | Qualcomm  | SDM845 Snapgragon 845    | Q_V1_P14,Q_V1_P14                                           | 1808      | S1                         |
| 20 | Galaxy S4        | Samsung | Qualcomm  | MSM8974 Snapdragon 800   | E330KKKUCNG5                                                | 1609      | \$1,\$2,\$3,M1,M2,I1,I2,I3 |
| 21 | Galaxy S5        | Samsung | Qualcomm  | MSM8974AC Snapdragon 801 | G900VVRU1ANI2                                               | 1411      | S1,S3,M1,M2,I2             |
| 22 | Galaxy S5 A      | Samsung | Qualcomm  | APQ8084 Snapdragon 805   | G906LKLU1CPK2                                               | 1612      | S1,S2,S3,M2,I1,I2,I3       |
| 23 | Galaxy Note5     | Samsung | Samsung   | Exynos 7 (7420)          | N920SKSU2DQH2                                               | 1708      | S2,M1,I2                   |
| 24 | Galaxy S6        | Samsung | Samsung   | Exynos 7 (7420)          | G920SKSU3EQC9                                               | 1704      | S2,M1,I3                   |
| 25 | Galaxy Note FE   | Samsung | Samsung   | Exynos 8 (8890)          | N935JJJU4CTJ1                                               | 2102      | S2,M1                      |
| 26 | Galaxy Note8     | Samsung | Samsung   | Exynos 9 (8895)          | N950NKOU4CRH2                                               | 1810      | S2,M1                      |
| 27 | Galaxy S8        | Samsung | Qualcomm  | MSM8998 Snapdragon 835   | G950U1UES5CSB2                                              | 1902      | S1,S2,S3                   |
| 28 | Galaxy Note9     | Samsung | Samsung   | Exynos 9 (9810)          | N960NKOU3DSLA                                               | 1912      | S2,M1                      |
| 29 | Galaxy S10       | Samsung | Samsung   | Exynos 9 (9820)          | G977NKOU2BTA2 / G977NKOU4DK1                                | 2001/2011 | S2,M1,I1,I2 / S2,M1,I1     |
| 30 | Galaxy S10       | Samsung | Qualcomm  | SM8150 Snapdragon 855    | G977UVRS3YSJK                                               | 1911      | -                          |
| 31 | Galaxy A31       | Samsung | Mediatek  | Helio P65 MT6768         | A315NKOU1BUA1                                               | 2102      | S2                         |
| 32 | Galaxy S20       | Samsung | Qualcomm  | SM8250 Snapdragon 865    | G981NKSU1CTKD                                               | 2011      | _                          |
| 33 | Galaxy A71       | Samsung | Samsung   | Exynos 9 (980)           | A716SKSU1ATF4 / A716SKSU3BTL2                               | 2006/2012 | S2,M1,I1,I2 / S2,M1,I1     |
| 34 | Galaxy Note20    | Samsung | Qualcomm  | SM8250 Snapdragon 865    | N986NKSU1CUC9                                               | 2103      | -                          |
| 35 | Redmi 5          | Xiaomi  | Qualcomm  | SDM450 Snapdragon 450    | MPSS.TA.2.3.c1-00522-8953_GEN_PACK-1_V042                   | 1712      | S1,S3                      |
| 36 | Redmi note 4x    | Xiaomi  | Qualcomm  | MSM8953 Snapdragon 625   | 953_GEN_PACK-1.122638.1.123338.1                            | 1712      | S1,S3                      |
| 37 | Mi Max 3         | Xiaomi  | Qualcomm  | SDM636 Snapdragon 636    | AT32-00672-0812_2359_46aa9a7                                | 1807      | <b>S</b> 1                 |
| 38 | Mi 5S            | Xiaomi  | Qualcomm  | MSM8996 Snapdragon 821   | TH20c1.9-0612_1733_9fe7ce8                                  | 1805      | S1,S3                      |
| 39 | Mi Mix 2         | Xiaomi  | Qualcomm  | MSM8998 Snapdragon 835   | AT20-0608_2116_6c4a86b                                      | 1805      | S1,S3                      |
| 40 | Black Shark      | Xiaomi  | Qualcomm  | SDM845 Snapdragon 845    | 00888-SDM845_GEN_PACK-1.163713.1                            | 1811      | S1                         |
| 41 | POCOphone F1     | Xiaomi  | Qualcomm  | SDM845 Snapdragon 845    | AT4.0.c2.6-144-1008_1436_e3055ba                            | 1809      | <b>S</b> 1                 |
| 42 | ZTE Blade V8 Pro | ZTE     | Qualcomm  | MSM8953 Snapdragon 625   | -8953 GEN PACK-1.79091.1.79899.1                            | 1612      | S1,S3                      |
|    | ZTE Axon 7       | ZTE     | Qualcomm  | MSM8996 Snapdragon 820   | TH.2.0.c1.9-00104-M8996FAAAANAZM                            | 1712      | \$1, <b>\$</b> 3           |



### Conclusion

- Design vulnerabilities
  - Technical problems + Political problems
  - Clear slate design for 6G
- Spec could be written better.
  - Formally verifiable?
  - Sample implementation needs to be provided
  - Negative testing (security testing) should be standardized!
- Use of NLP to understand 3GPP Spec
  - Seems impossible... Inconsistencies, ambiguities, and domain knowledge
- Binary vs. Source code vs. Spec comparison
  - Long long way to go  $\ensuremath{\mathfrak{S}}$



### **Questions**?

#### Yongdae Kim

- email: <a href="mailto:yongdaek@kaist.ac.kr">yongdaek@kaist.ac.kr</a>
- Home: <a href="http://syssec.kaist.ac.kr/~yongdaek">http://syssec.kaist.ac.kr/~yongdaek</a>
- Facebook: <a href="https://www.facebook.com/y0ngdaek">https://www.facebook.com/y0ngdaek</a>
- Twitter: <a href="https://twitter.com/yongdaek">https://twitter.com/yongdaek</a>
- Google "Yongdae Kim"

