From Nakamoto to YOSO --A New Model for MPC

Tal Rabin (UPenn and Algorand Foundation)

Based on Joint works with: Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk, Chengyu Lin, Bernardo Magri, Alex Miao, Jesper Buus Nielsen, Leonid Reyzin, Sophia Yakoubov

May 31, 2022

Multi-party computations

- Parties P₁, P₂, ..., P_n
- Holding inputs x₁, x₂, ..., x_n
- Want to compute a function, f(x₁, x₂, ..., x_n)
- While preserving the privacy of the inputs

Long history and many models

Yao, GMW, BGW, CCD, RB (the 80's)

Adversary: malicious, semi-honest, static, adaptive, mobile

Computational, information theoretic

Many beautiful results

New era

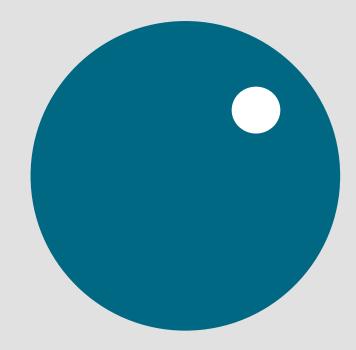
 Mega MPC, i.e. many many party computations

N ≈ millions

Presents a (Mega) problem

Computation in most existing solutions is quadratic in the number of parties (at best)

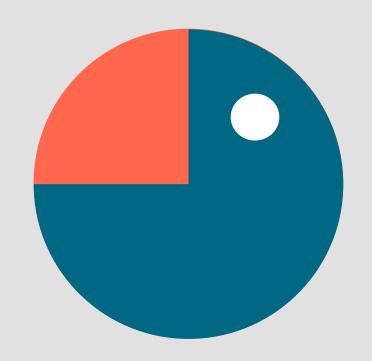
Making MPC unrealistic in this mega setting



Approach: Small n << N computes

 We assume an adversary that can corrupt a fraction of the parties, e.g. N/4

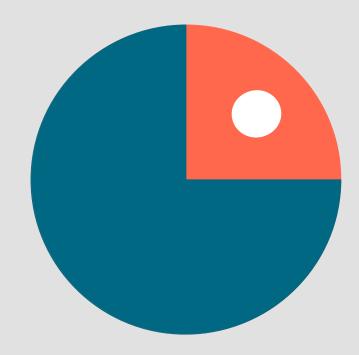
7



 We assume an adversary that can corrupt a fraction of the parties, e.g. N/4

Creates another problem

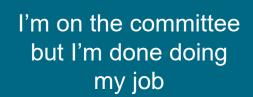
8



- We assume an adversary that can corrupt a fraction of the parties, e.g. N/4
- Creates another problem

9

 \cdot \rightarrow can corrupt the full small committee



But what if...

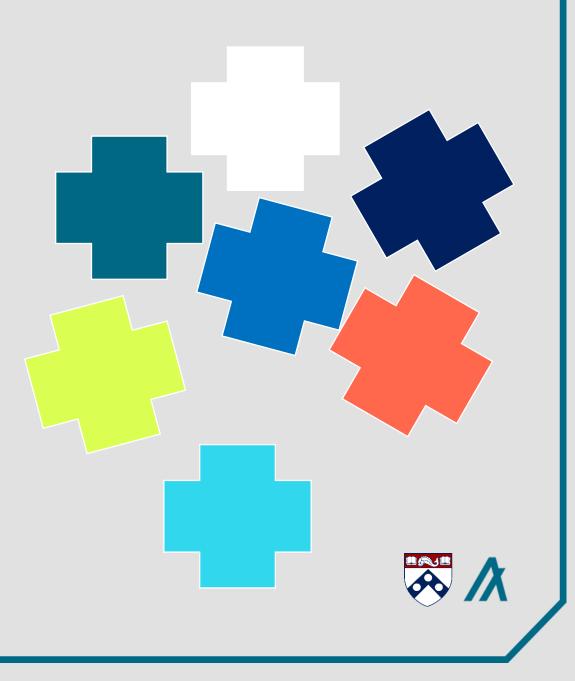
The adversary does not know who is on the committee

I'm on the committee but I'm done doing my job

Self nomination

Parties in the protocol self nominate

12


o Immediately implies that the attacker does not know who is in the committee

(We will need to work harder later)

Hello Nakamoto (N'08)

Self nomination: solve a puzzle

I solved the puzzle, I'm on the committee

Hello Nakam (N'08)

Self nomination: s

Solve a puzzle with proof of work

[DW'92, Back'02]

Bitcoin block suggestion

• Functionality that has: no interaction, no secret inputs

Solve the puzzle

15

Announce what the next block is

What about protocols that require communication?

- Jing-Micali '19 -- the Algorand protocol
 - Byzantine agreement:
 - Has interaction, multiple rounds
 - But still no secret inputs

Need better self nomination

 Self nomination has to be faster than Proof of Work

17

 In Proof of Stake done via Verifiable Random Function (VRF) [MRV'99] 10 min

vs Milliseconds

In a regu

S model

Step 1

18

Recall the problem:

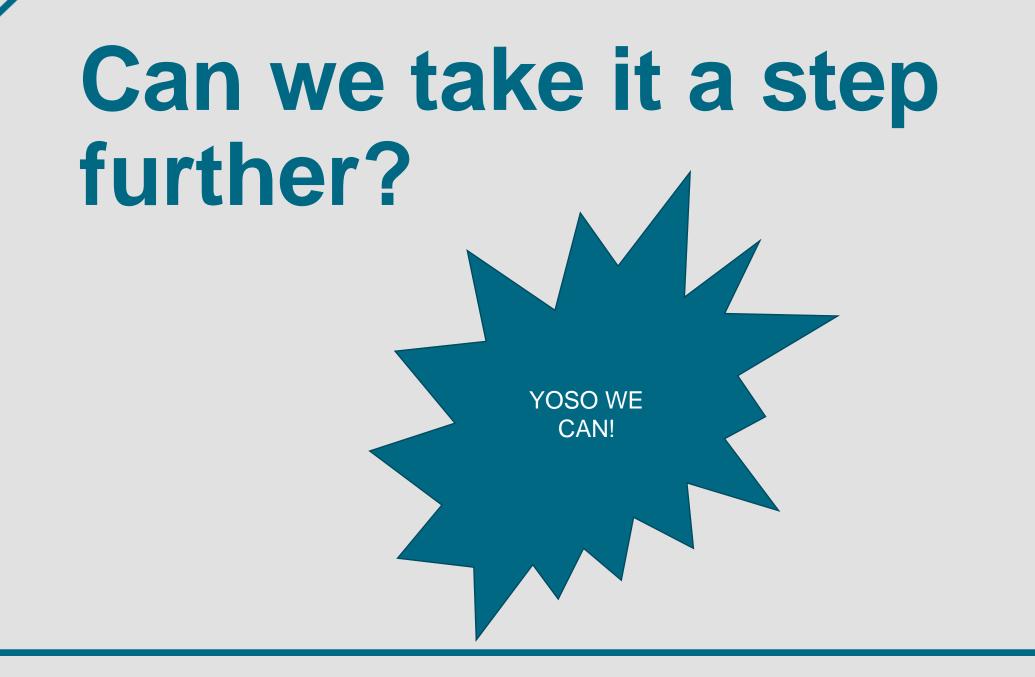
If the attacker knows the committee it can corrupt all the parties

And so on...

Player replaceability

Step 2

Step 3


And so on...

Quite surprising, but it works

- The protocol works despite the fact that every step is executed by a different committee
- No secret information

What is the next step?

Protocols that:

- Have interaction, multiple rounds

Have secret inputs

YOSO

You Only Speak Once

• Main theorem: Can compute any function in the YOSO model.

Provide two solutions: computational and information theoretic

Hard to design in the YOSO model

Protocols are interactive (need to speak more than once)

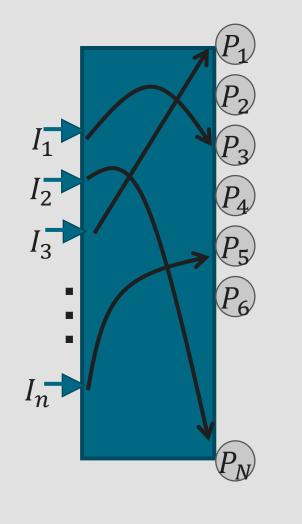
Servers hold secret information

Roles

- In MPC we have parties: P₁,...,P_n
- In YOSO the role are going to be such things as:
 - Role: shareholder in VSS of Step 5
 - Role: Party that adds two secrets in Step 8
- The protocol design will define the roles that will execute it
- Need to be able to decompose into roles that speak only once
 Send information to a follow-up role

Role Assignment

Mapping of roles to machines happens at execution time


- Mechanism for randomly and covertly assigning physical machines to roles
- Enable message delivery to future roles

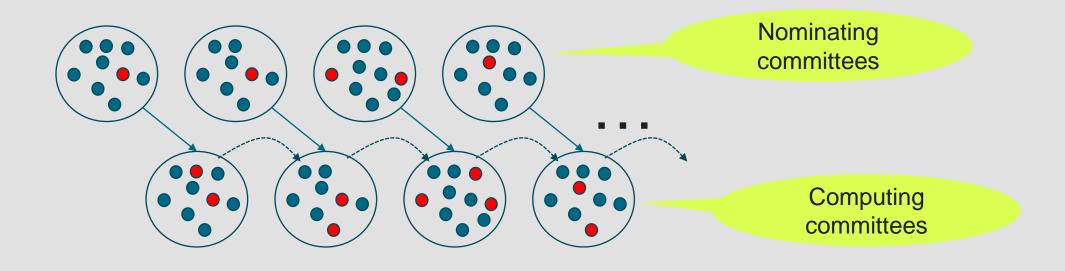
MAIN TOOL

Target anonymous channels

- Imagine that we had the following channels
 - \circ *n* visible input ports, *n* hidden output ports
 - $_{\odot}$ Random assignment of the output ports to an n-subset of the N nodes
- Send on the *i*'th input port, which represents a role, not knowing who will receive the message
- The receiver can secretly fill the role
 - It gets its secrets via encrypted messages that are sent over these channels

Can't use self nomination directly

Need to have access to the key for hidden port



Can the current committee choose the next?

Nominating committee self nominates

30

YOSOfying a protocol

- Can we have general techniques for converting a protocol into a protocol in the YOSO model?
 - We have some techniques

31

But some changes need to be tailored

ONE TOOL:

Speaking in the future

- Future broadcast (for simplicity assume semi honest)
- Server, D, holds message s that needs to be broadcast later

S, $\sum S_i = S$ Time t S_1, \dots, S_n (secret) Time t+k S_1, \dots, S_n (public)

Applications

- Threshold signatures: CA, code signing, notarization
- Key management, secure storage (incl. long-term secrets)
- (Threshold) cryptography as a service: sign, encrypt, O/PRF..
- Randomness Beacon

33

- Blockchain checkpoint (and cross chain)
- Blockchain as trusted party

Threshold as a service

- Key generation and refreshing in the YOSO model
- Efficient multikey/randomness generation (not in the YOSO model)

Join the YOSO model

- Improving assignment module
- Designing protocols with the YOSO model at the basis
- Specific special purpose protocols that need the YOSO model

